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The effect of viscosity on the disintegration of liquid jets can be con-
sidered in two ways. First, viscous forces alterthebasic flow: they form
a boundary layer whose presence necessarily alters wave formation,
Second, viscous forces can have a direct effect on the development of
perturbations for a given velocity profile of the basic flow, In this
case the study of stability must be based on the Navier-Stokes equa-
tions instead of the equations of an ideal fluid. This complicates anal-
ysis considerably. Available data [1] indicate thatthisinfluence isvery
minor in the case of moderately viscous fluids, It appears, therefore,
that the principal role is played by changes in the velocity profile
alone, and that the behavior of the perturbations is described by the
equations of an ideal fluid,

In the present study we investigated the stability of motion and wave
formation at the boundary between two fluids in order to determine
the effect of viscosity on the drop formation mechanism. The simplest
case of oscillation of the boundary is chosen in order to keep the anal-
ysis as simple as possible,

1. Let us consider the flow of three fluids of densi-
ties p;, P2, P separated by parallel boundaries (e. g.
water, water vapor, air).

We assume that the space is divided into four zones:
the first and second zones are occupied by the flowing
fluid of density p3 which forms a boundary layer of
thickness h; (the second zone); the third zone is occu-
pied by the flowing liquid of density p; forming a bound-
ary layer of thickness hy; the fourth zone contains the
fluid of density p3, which is at rest (Fig. 1).

Surface tension forces act at the boundary between
the second and third zones (the coefficient of surface
tension is 0); the velocity in the boundary layer varies
linearly with respect to the coordinate. The data for
each zone (in accordance with Fig. 1) are as follows:

(1) pl Vl =V9
(o0 Ly <L — 1)
@ o Va=V—( Vo) (h+y)/ A,
(—m<y<0)
(3) P2 Vy=Vo—Voy/ha,
O<y<h)
#) 03 Vy=0
(he Sy <A p0).

We take the stream function in the form

Y = @ (y)eil==-8n, (1.1)

The solutions for the function ¢(y) in zones 1, 2, 3,
4 are, respectively,

@y = Cye®, @y = Coe™™ + (e,

Py = Cpe™¥ - Coev, @y = Coe™, (1.2)

The equation of motion yields an expression for the
pressure gradient,

ap o’ . du’ , dv
w=—e(Fm t g
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0 o
(v=% v=—pr) (1.3)
By (1.2) and (1.3),
u =g (yelerd, v = — jap (y)eilex-F), (1.4)
Hence,
8 7 4 av i (o]
%:zp[(ﬁ——od/)cp -{-oc(pgy—}e( &, (1.5)
Further, the rise of a fluid particle above the
unperturbed boundary surface is given by
n = 'r]Dg"(ax—Bl)i
an , om o Ot (cBE)
N =0 =V = — B ¢ 8 —
= — foupet (=B — jon°Vet (235, (1.6)
Hence,
o . Ol(P
v = gy (1.7)

The normal velocity components and the pressure
gradient at the boundaries y = —h;, y=0, y = hy are
continuous, so that

8 ap:

o=, = for y=—nm
v, F 33 .

Qg = @3, 'al;“—é%z_d 6:cTl = ioma® for y=0
E)pg _ 6P4

Ps=Qs, 5= for y=h,. (1.8)

Substituting (1.2), (1.5), (1.6), and (1.7) into (1.8)
and introducing the dimensionless quantities

ml = ah]v My = dhz:

M=p5/01 N =ps/ps, (1.9)

we obtain a system of six equations linear in the arbi-
trary constants. Eliminating arbitrary constants from
the equations of this system, we obtain a characteristic
equation of the form
— 2+ g, (1 —e?m)]'x
x {2Mn? [(1 — N)B + gole™™ — M (ng® +
+ gamo) IB (1 + V) + (1 —N)e™) —
—~g (1~} 4 {B 1L+ )+
F (I —Netm] — gy (1 —e?™)){[2n + g, (1 —

— e—zm,)] InOQ — &M — 1] + Znoﬂgle—?ﬂnl} =0 ,

V-~V

=R—aV, m=p—aVo, g = —

Yo Lo (1.10)
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2. Let us consider the special case where the den-
sities in zones 3 and 4 are equal (e. g., in the case of

¥ (4)
y

the water—water vapor-air system, when air of the
same density as that in zone 4 moves instead of vapor
in zone 3, so that p; = p3, N = 1), Instead of Eq. (1.10)
we have

— [2n + g, (1 — e*m)] (2Mn Pg,eme —
—M (¢ + gmo) 12 — g, (1 —
—e )} + {2 — gy (1— e?™)} x
x{2n + g (1 —e®™)] [ne — gmo —

— 1] + 2ng2giemy = 0. (2.1)

Equation (2.1) therefore corresponds to the problem
of stability of the boundary separating two fluids of den-
sities p; and py (e.g., water and air) with a boundary
layer of thickness hy in the first fluid and a boundary
layer of thickness hy in the second. Let us set

hi=h (my =m), hy = kh (mo == km),
1 4
K = m 3 LO =KkV. (2.2)
Then
M—H——m Wt Kkm =R
V - H i - - ?
_ B gh gk
BH=%, S =5=K
Th? Mm3 BV
V= wo=0, w=8 (2.3)

When we substitute (2.2) and (2.3) into Eq. (2.1),
the latter becomes

t+MR -+ 1p+q9 A+ M)—
—K( —~M)+ a—bMIR* + [pg(1 + M) —
—+ QKA —M) + aq —bpM —DIR* —
—[pgK (4 — M)+ (p+ @DIR —pgD =0 ,
= —Km + '[,K (1 — em),
q = Kkm —'[,K (1 — e7?m),
a = Ke#m

b = Ke-m. (2.4)

Letus consider the special case in which there is no
boundary layer in zone 3, i.e., the problem of oscil-
lation of the boundary between two fluids (e. g., water
and air) with allowance for a boundary layer in only
one of them (in the water).

Setting k = 0 in (2.4), we find that

H? ++ p1* + pHl + py =0

. n1 + Mn, _ ny—D
== "1y » = 1w
__ngD n=m-+ A e
Po = TL M m=m—A> A-—-~2——. (2.5)

In the range of values of the parameters entering
into its coefficients Eq. (2.5) has one real root H; = a
and two complex conjugate roots Hy,3 = b = ic. The re-
lationships between the roots and coefficients of this
equation are given by the expressions

@+ 2b=—py 2ab+ 8+ & =p,
a (b® 4 %) = — p,. (2.8)

To obtain an equation for determining the oscillation
increment ¢ we eliminate the quantities a and b from
(2.6). This yields

Y412 =F, B=",(p.2—3p) P,
__ 27pd® 4 4pi®+ 4pops® — 18popipa — pi’p?
r= F — 5 ' (2.7)

Equation (2.7) should be used to determine the real
roots only. It is easy to solve graphically by means of
the curves F = F(m,W) and F = (y + 1) (the dashed
curve in Fig. 2).
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Solutions of Eq. (2.7) appear in Figs. 3 and 4, which
show the square H;’ of the dimensionless increment, as
a function of the dimensionless wave number for several
values of W, and the optimum wave number m, asa func-
tion of the Weber number (for M = 1.2:107%, water-air).

Let us consider some special cases.

We assume that the thickness h of the boundary
layer tends to zero. Equation (2.5) then yields

Bi= VMV a3 /p, . (2.8)
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This result was obtained by the authors of{2]. Inthe
absence of a velocity or a second fluid (V=0o0r M =
= 0), the oscillation increment 8j turns out to be imag-
inary. This indicates that the motion in this case is
stable,

Squaring (2.8), differentiating the expression for
the square of the increment with respect to zero, and
equating the derivative to zero, we obtain an expres-
sion for the wavelength of the optimal perturbation
(corresponding to the maximum of the oscillation in-
crement),

_ s
T VR

(2.9)

In the other limiting case (W = =), setting D = 0 in
the solution of Eq. (2.5), we obtain the optimal wave-
number m corresponding to the asymptote in Fig. 4,

m, = 1.225. (2.10)

From this we obtain the limiting wavelength in the
presence of a boundary layer in the liquid for W — «
(practically speaking, for W > 0.1),

o > 25th

=19%

5.12h. (2.11}

Hence, in this limiting case of a boundary layer
present in the liquid the wavelength cannot be smaller
than approximately five times the thickness of the
boundary layer for any value of the liquid velocity.
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As we see from Fig. 4, the value of the dimension-
less wave number in the general case does not exceed
my = 1.5, which corresponds to a wavelength of Ay, =
= 4.2h. From the same figure we see that the bound-
ary surface becomes stable for Weber numbers W =
= 0.004.

The above problem of oscillation of the boundary be~
tween two fluids with allowance for the boundary layer
in one of them (in the denser fluid) is the most impor-
tant one, since the boundary layer in the less dense
fluid has only a weak effect on the oscillations.

This may be seen from the following considerations.
From Eq. (2.4) for D = 0 (capillarity is not involved)
we can obtain simple equations corresponding to:

1. The case of oscillations of the boundary between
two fluids with allowance for the boundary layer in the
denser fluid only,

(M + DH: — (Mny + n)H + ny = 0.

2. The case of oscillations of the boundary between
two fluids with allowance for the boundary layer in the
less dense fluid only,

(M + DH* — (ny + Mn)H + Mn, = 0.

Solution of each of the above equations simultaneously with trans-
formed equation (2.8) corresponding tc the case of oscillations of the
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boundary between two fluids with a discontinuous velocity distribution
enabled us to draw the following conclusions:

(1) The presence of a boundary layer in the denser fluid markedly
increases the oscillation increment as compared with the case of a
discontinuous velocity distribution at the boundary (the lower-density
fluid has only a weak effect).

(2) The presence of a boundary layer in the lower-density fluid
(because of its low density) yields values of the oscillation increments
comparable with those obtained in the case of a discontinuous velocity
distribution,

3. If the thickness of the boundary layer in the lig-
uid or gas is small, the viscosity of the liquid or gas
can have a direct effect on wave formation. The prob-
lem of the direct effect of viscosity on wave formation
without allowance for the velocity of the fluid was
solved by Lamb [3] (pp. 787-791), who found that vis-
cosity resulted in damping of the oscillations according
to the law
}\«2

A= Aoe—-zva?t] T = Sty (301}

Here A is the wave amplitude, A; is the initial am-
plitude, v is the kinematic viscosity of the liquid, « is
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the wave number, and Tisthetime required for the am-

plitude to decrease e times (e is the base of Napierian
logarithms).
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This means that viscosity affects short waves only.

It is of interest to compare the direct effect of vis-
cosity on oscillations with the effect by way of the
boundary layer in the presence of a fluid velocity.

As in [4], we estimate the wavelength from the for-
mula for the arbitrary amplitude A of the waves with
respect to time [3]:

a4 _ ¢ 2
T = T A
— 2
c:Vca/pl, v1=—%, cc:—kE (3.2) -

Here c is the velocity of propagation of the capillary
waves, vy is the coefficient of kinematic viscosity of
the fluid, « is the wave number, and A is the wave-
length.

According to Jeffrey [3], the expression for the gas
pressure over the moving wavecrest can be taken in
the form

B°0s (U — ¢)?dn /dz,

where U, is the velocity of the gas, 8% = 1is a coef-
ficient characterizing the gas pressure distribution
over the wave crest, and d7/dx is the derivative of the
rise of the fluid surface with respect to the coordinate
in the direction of the velocity Us. Then

C = %, (U, — cfad. (3.3)

Substituting the values of C and c into (8.3) and neg-
lecting the wave propagation velocity as compared with
Uy, we obtain

dA
at

A 1 ° U2 ~—  2p0?
==, (__=B_P_2 zgvl__l"ﬁ), (3.4)
The amplitude A is maximum for 1/7 =0, From
this we find that

W, = 4n g{iﬁ L;\—l/‘

- 2
(wy =0, M (305)

M1’

Since the optimum wavelength is
A = 2nk [ mg (W), (3.6)

where my(W) must be taken from the curve of Fig. 4,
we can substitute (3.6) into (3.5) to obtain the following
expression for the case of a boundary layer in the lig-
uid only:

L =16 [m, (W)* | W2, (3.7)

Here we assumed that g° = 1/2.

Equation (3.7) was derived from the condition of
equality of the optimum perturbation wavelength ob-
tained with allowance for the boundary layer but not
for the viscosity, to the wavelength obtained with al-
lowance for a velocity distribution discontinuous at
the boundary surface.

This equation enables us to estimate the range of
applicability of the above theory.

The curve of Fig. 5 constructed on the basis of Eq. (3.7) indicates
that with low-viscosity liquids (water et al, ) the effect of viscosity is
negligible. For example, for a velocity of V =100 m/sec and h =
= 0,02 cm for water we have W =37, L =13 460; the point correspond-
ing to these values of W and L lies high above the curve of Fig. 5.
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